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The development of MRI systems operating at or above 7 T has provided researchers with a new window into the
human body, yielding improved imaging speed, resolution and signal-to-noise ratio. In order to fully realise the po-
tential of ultrahigh-field MRI, a range of technical hurdles must be overcome. The non-uniformity of the transmit
field is one of such issues, as it leads to non-uniform images with spatially varying contrast. Parallel transmission
(i.e. the use of multiple independent transmission channels) provides previously unavailable degrees of freedom
that allow full spatial and temporal control of the radiofrequency (RF) fields. This review discusses the many ways
in which these degrees of freedom can be used, ranging from making more uniform transmit fields to the design
of subject-tailored RF pulses for both uniform excitation and spatial selection, and also the control of the specific
absorption rate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
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INTRODUCTION

Recent years have seen increased popularity of human MRI sys-
tems operating at ultrahigh magnetic field strength (B0 ≥ 7 T).
However, operating at ultrahigh field (UHF) creates an additional
set of technical challenges which need to be solved before it can
be widely adopted. These problems originate from the interac-
tion of the patient with the electromagnetic fields to which they
are exposed during the course of an MRI examination. Although
these interactions are present during examinations at lower field
strengths, they are more severe for UHF MRI and therefore result
in more significant image artefacts. The higher Larmor frequency
(and consequently shorter electromagnetic radiation wave-
length) results in wave interference effects becoming more pro-
nounced (1–4). This manifests itself as inhomogeneity in both
the transmit and receive radiofrequency (RF) magnetic fields,
B1
+ and B1

–. Although more spatially variable receive fields result
in better parallel imaging performance (5,6), non-uniformities
in the transmit field lead to spatially varying flip angles. This
can result in spatially varying contrast and, in the worst cases, re-
gions in which no excitation can be achieved at all. Furthermore,
the precise pattern of inhomogeneity is subject dependent (7). A
multitude of solutions have been proposed to address the prob-
lems associated with B1

+ inhomogeneities, such as the use of
adiabatic RF pulses (8,9), dielectric pads (10–12) and dedicated
coil designs (13,14). However, the most flexible approach is the
use of multiple transmission channels, known as parallel trans-
mission (PTx), which is the subject of this review.
The concept of multiple transmitters was proposed by Hoult

(15) and Ibrahim et al. (16) in 2000. The paper by Hoult investi-
gated the fundamental limits of B1

+ homogeneity achievable by
the use of multiple coils to ‘shim’ the B1

+
field in an analogous

manner to B0 shimming. The first consideration of the use of
multiple channels in a realistic loaded coil was performed by
Ibrahim in a finite-difference time-domain numerical simulation

study, in which improved B1
+
field homogeneity was obtained

with a birdcage coil by driving each rung with a different phase.
Interest in PTx increased greatly after the demonstration of

RF pulse acceleration by Katscher et al. (17) and Zhu (18). It
was these papers that realised that PTx could provide full spa-
tial and temporal control of the RF field, an idea which the
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research community has latched on to with great enthusiasm.
PTx has now transitioned from a purely research topic into clin-
ical practice. Two channel transmitters are installed as standard
in the latest clinical 3T systems from the major vendors, and
many new 7T scanners are now equipped with multiple trans-
mit channels.

This review explains the fundamentals and latest develop-
ments of PTx in its many different forms. This is achieved by clas-
sification of the methods based on the different time frames at
which differences between channels are exploited. We begin
with ’static PTx’, where the transmit settings are optimised once
at the beginning of the experiment and then remain fixed for the
rest of the scan. This is followed by ’dynamic PTx’, where differ-
ences between channels are exploited at the shortest time
frames allowed by the system spectrometer. The intermediate
area of ‘multi-pulse PTx’ is then examined, followed by a discus-
sion of further topics relevant to PTx.

FUNDAMENTAL CONCEPTS

PTx systems differ from standard scanners by their RF system ar-
chitecture. The key component of a PTx system is the transmit
coil array, which must consist of several elements designed to
produce spatially distinct RF field patterns. Each is driven by its
own RF front end, consisting of multiple components. Although
many different specific RF front ends have been proposed in the
literature (19–23), for full PTx, all channels must be indepen-
dently driven with full control over amplitude and phase modula-
tion with microsecond temporal resolution. Each channel-specific
waveform requires a separate RF amplifier in order to deliver
the required power to each coil array element.

When driven with an RF pulse, the ith transmit element pro-
duces RF magnetic and electric fields, denoted by B1,i(r, t) and
Ei(r, t), respectively. The NMR-active component of B1,i(r, t) is re-
ferred to as B1,i

+ (r,t) = ½[B1,i
x (r,t) + jB1,i

y (r,t)] (24,25), where the x
and y directions are perpendicular to the static magnetic field
and j = √–1.

The different forms of PTx can be understood by further exam-
ining how they impact on the spatiotemporal nature of the
transmit field. According to the principle of superposition, the
net B1

+ produced inside the subject is the sum of the fields pro-
duced by each element, as given by Equation [1a], where NT is
the number of transmit elements. However, the spatial and tem-
poral components of B1,i

+ can be separated, as shown in Equation
[1b]. Here, Si(r) is the spatial ‘footprint’ of a transmit element, of-
ten referred to as the transmit sensitivity, and pi(t) is the RF pulse
played through the ith transmitter. This equation describes
‘dynamic PTx’, in which each coil element transmits its own
channel-specific waveform. A further simplification is shown in
Equation [1c], where the same RF pulse waveform, p(t), is trans-
mitted on each channel, scaled by a channel-specific complex
weight, wi. This equation describes ‘static PTx’. The final form of
PTx described by this paper is ‘multi-pulse PTx’, in which the
channel-specific weights or waveforms can change throughout
an MR sequence.

Bþ1 r; tð Þ ¼
XNT

i¼1

Bþ1;i r; tð Þ (1a)

Bþ1 r; tð Þ ¼
XNT

i¼1

pi tð ÞSi rð Þ (1b)

Bþ1 r; tð Þ ¼ p tð Þ
XNT

i¼1

wiSi rð Þ (1c)

All PTx methods rely on some degree of prior knowledge
of Si(r) of each channel. This is achieved by ‘B1

+ mapping’,
which is discussed later in this article. Full knowledge of Si
(r) constitutes the measurement of its amplitude and its
phase relative to every other element at every location in
space. It should be noted that there are many ways to define
the units of S(r), wi and p(t) in a dimensionally consistent
manner; the specific selection by a user will probably depend
on the specifics of the PTx system being used. Unless stated
otherwise, the figures in this paper consider sensitivity maps
as dimensionless.
The electric fields generated by each element also play an im-

portant role in PTx experiments, as it is the electric field which is
responsible for heating, with the specific absorption rate (SAR)
used as a surrogate metric. Regulatory agencies place limits on
temperature increases and on local and whole-body SAR (26).
SAR is a particular concern with PTx MRI because the total elec-
tric field (which is the result of a linear superposition of fields
from each transmit channel) becomes spatially and temporally
variable, potentially making ‘hot spots’ in unexpected locations.
Many of the methods described in this review attempt to explic-
itly control SAR, often by using electric field information taken
from numerical models. SAR is discussed in more detail later in
the review.
Once the desired level of transmit and electric field informa-

tion has been collected or inferred, it can be used to design
the inputs to each of the transmit channels. Much PTx research
has focused on the design of channel inputs with two separate
goals in mind: (i) to overcome the effects of B1

+ inhomogeneity;
and (ii) to achieve local excitation (LEx).
B1
+ inhomogeneity compensation can be achieved by all three

forms of PTx. In this review, we adopt the following terminology
for clarity: B1

+ shimming refers to the use of static PTx to produce
a spatially uniform overall B1

+
field; flip angle shimming refers to

the use of dynamic PTx to produce a spatially uniform flip angle;
and signal shimming refers to the use of multi-pulse PTx to en-
sure that each tissue type produces a spatially uniform signal
in any measured image.
However, it is important to note that, whatever the desired

goal (i.e. compensation for B1
+ inhomogeneity, achievement of

LEx or something more elaborate), there are generic algorithms
with which the channel inputs can be determined. These differ-
ent methods are described in the following sections.

STATIC PTX

The most basic form of parallel transmission is static PTx, whose
goal is to create the optimal conditions in a region of interest
(ROI) by adjusting the complex weights (wi) with which the indi-
vidual channels are driven, defined by Equation [1c].
What constitutes ‘optimal’ depends on the specific application,

but the majority of static PTx demonstrations have focused on B1
+

shimming. Initial methods specified the objective of uniform B1
+

across the slice or volume being imaged (15,16,27–29). Alterna-
tive pragmatic approaches were simultaneously being explored
experimentally. The first physical implementation of B1

+ shimming
demonstrated that the B1

+
field could be optimised in specific

[1a]

[1b]

[1c]
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voxels using a two-port birdcage coil at 3 T (30). It was also
shown that manual B1

+ shimming using operator intervention
yielded more uniform images at UHF (31–33). However, it was
soon realised that demanding uniformity across the entire im-
aged slice can be overly restrictive. One way of improving perfor-
mance is to demand uniformity only over a smaller ROI – this
particularly makes sense when imaging structures that are
smaller than the field of view (FOV) and was originally explored
in the context of 7T prostate imaging (34,35). As phase typically
varies slowly in space, simply aligning the average phase of each
channel within the ROI often leads to a good solution (35), as all
channels are constructively interfering within the target region.
This method has the advantage of not requiring the measure-
ment of full B1

+ information. The second realisation to aid B1
+

shimming was that the appearance of an image often critically
depends on the magnitude of the transmit field, and that its spa-
tial phase distribution is often unimportant. Hence, B1

+ shimming
algorithms could relax their constraints, enabling solutions with
a more homogeneous magnitude and inhomogeneous phase
to be found (29,36–38).
Other static PTx methods have been designed with specific

applications in mind. For example, adiabatic pulses are only ef-
fective when the B1

+ amplitude is above the adiabatic threshold.
Therefore, methods have been designed to maximise the
minimum (MaxMin) B1

+ without constraining uniformity, so that
the adiabatic condition is met across the object (39,40). An-
other static PTx method obtains the weights which produce
the largest overall B1

+ amplitude per unit power deposited in
the patient (41).
The use of static PTx for LEx has also been explored (42–45).

The utilised cost functions typically attempt to maximise the ra-
tio of the B1

+
field in a desired ROI to the B1

+
field outside the ROI.

These methods have not yet been widely adopted, as they
require a large number of transmit channels to achieve the re-
quired localisation in order to perform reduced FOV imaging;
instead, LEx usually requires the design of full RF waveforms
via dynamic PTx, as discussed later.
The majority of static PTx methods determine optimum

weights by solving a numerical optimisation problem, typically
by iteratively minimising a cost function. Many different cost
functions have been proposed, with most consisting of error
terms to constrain the spatial B1

+ distribution (Φtarget), limit SAR
(ΦSAR) and ensure the results are within hardware limits (ΦHW).
Static PTx optimisation problems are posed in one of three

ways. The first is the regularised optimisation approach, in which
the different penalised terms are added together, weighted by
the regularisation factors λ and μ, as given in Equation [2a].
The cost function is typically solved for multiple values of λ and
μ; these form a family of solutions with differing trade-offs be-
tween cost terms, often visualised using ‘L-curves’ showing the
size of the component error terms. The solution that offers the
best compromise is selected. The second related approach is
the constrained optimisation framework (Equation [2b]). This en-
ables the optimum of the B1

+ constraint term to be found for
given SAR and hardware limits.

minimise Φtot ¼ Φtarget þ λΦSAR þ μΦHW (2a)

minimise Φtarget

subject to ΦSAR < SARmax

ΦHW < HWmax

(2b)

A selection of the different Φtarget used in different static
PTx methods is given in Table 1. The sensitivity matrix S is
constructed from the B1

+
field information of all NT channels

in a user-defined ROI of NROI voxels. The information in the
ROI from the ith transmitter is reshaped into an NROI × 1 col-
umn vector si, all of which are horizontally concatenated, so
that S ¼ s1; s2…; sNT½ �. The NT × 1 vector w contains the com-
plex weights to each channel, and NROI × 1 vector b contains
the desired B1

+
field distribution.

Details of the SAR constraints can be found in the SAR section
later in this review. For the sake of brevity, the additional hard-
ware constraints are not described further, except to note that
the most common additional constraint is for peak instanta-
neous power, which is related to max{|w|}; detailed explanations
are given in refs. (46–48).

The third approach to obtain weights is to calculate them al-
gebraically. These approaches do not require the use of optimi-
sation algorithms as they can be found by simple arithmetic
(35) or by performing matrix eigendecompositions (41).

Illustrative examples of several static PTx strategies are shown
in Fig. 1. Figure 1A considers prostate imaging at 7 T using an
eight-channel dipole array (49). Transmitting with the default
weights of unit amplitude and zero phase (relative to an arbitrary
reference) on each channel produces an overall B1

+
field which is

high at the periphery and low in the ROI. Phase shimming results
in a larger B1

+
field in the ROI, but the greatest field focusing is

achieved using the maximum efficiency method. It should be
noted that all solutions are scaled to have the same power
(where power = wHw). Examining the weights themselves, the
phase shimming algorithm is constrained to produce weights
with the same amplitude for all channels. The maximum effi-
ciency approach can reweight channels appropriately to pro-
duce a more efficient result. However, it should be noted that
phase shimming does not require full B1

+
field information, which

can be difficult to acquire at 7 T.
Figure 1B demonstrates two static PTx methods for a sagittal

brain slice using simulated data from a 12-channel transverse
electromagnetic (TEM) head coil. Again, it should be noted that
all solutions are scaled to have the same power. The default
weights produce a field with a very large dynamic range. The
MaxMin algorithm produces a B1

+
field which maximises the

lowest realised field in the slice, providing improved perfor-
mance for adiabatic pulses. However, the overall non-uniformity
remains, making these weights inappropriate for imaging using
non-adiabatic pulses. Using the coefficient of variation (CoV)

Table 1. Example cost function terms Φtarget used to con-
strain B1

+ in static parallel transmission (PTx) optimisation
problems

Field constraints Cost function term References

Linear least
squares (LLS)

Sw� bk k22 (15,16,27–29)

Magnitude least
squares (MLS)

Swj j � bk k22 (36–38)

Coefficient of
variation (CoV)

std Swj jð Þ
mean Swj jð Þ

(29,34)

Maximise the
minimum (MaxMin)

max(min(|Sw|)) (39,40)

[2a]

[2b]
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metric produces a much more uniform B1
+ appropriate for imag-

ing, but with a much lower mean amplitude as the solution is
very inefficient in terms of power.

The efficacy of static PTx has been widely demonstrated, par-
ticularly for two-channel birdcage systems at 3 T, where B1

+

shimming has resulted in improved and more reliable imaging
in many different clinical imaging scenarios (50–57), including
imaging near metal implants (58). Furthermore, it has been
shown that increasing the number of channels from two to eight
improves the performance of 3T in vivo body imaging (59), and
further studies have shown further improvements with up to 32
channels (60,61). B1

+ shimming has also been applied in vivo at
UHF. Much work has focussed on the brain, withmultiple imaging
demonstrations at both 7 T (62–66) and 9.4 T (19,33,67–69), in
addition to spectroscopy (70–73). 7T body imaging has increased
in popularity, with B1

+ shimming being applied to cardiac (74–79),
musculoskeletal (41,80–83), prostate (35,49,84–86), liver (87) and
kidney (88–90) imaging.

DYNAMIC PTX

Static PTx is fundamentally limited to using the principle of su-
perposition to achieve the goals of the pulse designer. Although
it provides considerable control over B1

+, for many imaging sce-
narios, the ability to achieve the desired B1

+ across large FOVs

at UHF is limited by the degrees of freedom provided by con-
structively and destructively interfering a finite number of trans-
mit sensitivities (29,60,61). However, additional flexibility can be
gained by recognizing that what is actually desired is a ‘flip an-
gle’ distribution, which depends on the overall rotation of the
magnetisation and not just the instantaneous B1

+. Dynamic PTx
modulates the B1

+
field distribution over the shortest timescales,

with the aim of directly controlling the rotation of magnetization,
and hence the overall flip angle, at multiple spatial locations
simultaneously. In this framework, the capabilities of PTx can
extend far beyond that which is achievable with static PTx alone.
The behaviour of magnetisation is described by the Bloch

equation. However, its non-linear behaviour in the transverse
magnetisation when rotations are large is difficult to incorporate
into pulse design algorithms, and so the small tip angle (STA) ap-
proximation is often made (91). This simplifies the pulse design
problem and introduces the concept of ‘transmit k-space’ (k(t),
as defined by Equation [3]) to account for the effect of magnetic
field gradients applied during the RF pulse.

k tð Þ ¼ �γ∫Tt G t′ð Þ dt′ (3)

Here T is the duration of the pulse and G(t) is the applied field
gradient on all three axes. The key difference between transmit
k-space and the more often used quantity for image encoding

Figure 1. Illustrative example of B1
+ shimming. (A) Net transmit sensitivities produced by a 7T, eight-channel dipole array when transmitting with de-

fault drives (top left), phase shimming (centre left) and maximum efficiency (bottom left). The prostate is indicated by the red box. The average sen-
sitivities in the regions of interest (ROIs) are given by SROI . The weights obtained for each method are given on the right. (B) Net transmit
sensitivities produced by a 7T, 12-channel transverse electromagnetic (TEM) array with default drives (left), static parallel transmission (PTx) weights
which maximise the minimum B1

+ (centre), and applying weights which minimise the coefficient of variation (right). The minimum sensitivity in each
slice is given by Smin. (Data courtesy of Dr Alessandro Sbrizzi, Dr Alexander Raaijmakers and Dr Hans Hoogduin, UMC Utrecht, the Netherlands).

[3]
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is the limits on the integral; in the transmit case, the integration
runs from ‘now into the future’, whereas, for image encoding, the
limits run from ‘the end of the excitation until now’. This can be
understood by considering that, as the RF pulse is played out,
new transverse magnetisation is being created, which is then
subject to all future applied gradients. The STA approximation
is used for the majority of current PTx pulse design algorithms
(17,18,92), with the spatial domain approach (92) widely adopted
as it is sufficiently flexible to incorporate B0 inhomogeneity, arbi-
trary transmit k-space trajectories and spatial error weightings.
As with static PTx, the pulses are obtained by minimising a cost
function, posed in the same manner as Equation [2a] or [2b]. An
example using regularised optimisation with a linear least-
squares (LLS) error term and total RF power constraint is given
by Equation [4]. Here, p is a vector containing the RF pulses of
all transmit channels, m is the desired transverse magnetisation
vector and A is the system matrix, which contains all information
about the excitation k-space trajectory and the transmit field pat-
terns. The terms in Equation [4] are closely related to those in
cost functions used for static PTx. The vector p can be consid-
ered to contain time-variable weights for the NP intervals in the
RF pulse; Equation [4] reduces to the static PTx optimisation for
the case when NP = 1.

minimise Φtot ¼ Apk �mk22þλkpk22 [4]

This linear problem can be solved using a number of
methods, such as conjugate gradients (93), and calculations
can be accelerated by taking advantage of non-uniform fast
Fourier transforms (94). As with static PTx, many alternative cost
functions have been proposed. If a spatially varying
magnetisation phase is tolerable, the magnitude least-squares
(MLS) method can again be applied (37,38). Optimisations that

account for SAR (18,46,47,95–98), hardware (46,48) or even ther-
mal effects (99) can also be formulated in this framework, and
these can be solved using regularised or constrained optimisa-
tions (46,47).

Given the above possibilities in formulating the cost function,
the remaining issue becomes the choice of k-space trajectory.
There are broadly two classes of trajectory – those used for flip
angle shimming and those used for LEx. These are discussed in
the next two sections.

Dynamic PTx for flip angle shimming

PTx pulse design has been employed in cases in which B1
+ shim-

ming cannot achieve a sufficiently uniform flip angle across an
ROI. A variety of different k-space trajectories have been pro-
posed, falling broadly into the two categories shown in Fig. 2;
those that require slice or slab selection (top row), and those
which can be non-selective (bottom row). The selective trajecto-
ries are formed of individual ‘spokes’ which each provide slice se-
lectivity – a single spoke is equivalent to a single slice-selective
pulse. Additional in-plane spatial modulation is achieved by
employing multiple spokes that are offset in k-space; typically,
these offsets correspond to low spatial frequency modulations,
reflecting the spatial length scale of the B1

+ inhomogeneity
(38,100–103). The same RF waveform is used along each spoke
in order to retain selectivity; consequently, the only quantities
to be optimised are complex weightings of each subpulse for
each channel, making these optimisation problems inherently
two-dimensional (2D) in nature. An example spoke RF pulse op-
timisation is illustrated in Fig. 3, which compares MLS B1

+ shim-
ming with a five-spoke RF pulse, solved using both LLS and
MLS approaches discussed earlier and additionally employing
the multi-shift algorithm (104). The L-curve in Fig. 3 shows the
trade-off between flip angle accuracy (horizontal axis) and power
(vertical axis) when solving the optimisation problems with

Figure 2. k-space trajectories for flip angle shimming. Black lines indicate the path through k-space, and shaded regions indicate where radiofre-
quency (RF) transmission occurs, with the colour of the shading indicating the k-space velocity at that point. The top row shows trajectories which
are spatially selective in a single direction and, consequently, much higher spatial frequencies are visited in that dimension.
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different regularisation parameters. The MLS B1
+ shimming result

is only able to produce a moderately uniform field. The LLS
spokes method produces an excitation with a more uniform
magnitude, but is constrained to produce uniform phase. The
MLS spokes method produces the most uniform excitation by
relaxing the phase constraint.

If spatial selectivity is not necessary, simple hard pulses are of-
ten employed (which correspond to a point at k = 0). Low-
frequency k-space modulations can also be introduced in three
dimensions; the kT-points method is a direct generalisation of
2D spokes, with the trajectory ‘stopping’ at discrete locations in
k-space (105). Alternatively, the ‘spiral non-selective’ (SPINS)
method uses a continuously moving three-dimensional (3D)
spiral trajectory to cover a low-frequency 3D k-space at variable
velocity (106).

Flip angle shimming PTx pulses have been applied to both
brain and body imaging. 2D spokes have been shown to im-
prove 7T brain (66), cardiac (74) and liver (107) imaging. Figure 4
shows liver images obtained at 7 T using spokes pulses with
increasing numbers of spokes – the achievable homogeneity in-
creases at the expense of increasing pulse durations. 3D non-
selective pulses have also been shown to benefit high-field brain
imaging (108,109). Figure 5 shows magnetisation-prepared rapid
gradient echo (MP-RAGE) images acquired using SPINS excita-
tion pulses with a two-channel PTx system at 7 T. The relatively
large amount of gradient encoding employed by SPINS pulses
means that they can be effective with potentially a small number

of transmit channels; at 3 T, good performance was demon-
strated using only a single transmit channel (106).

Spatially and spectrally selective PTx pulses

Another application of dynamic PTx pulse design is to reduce the
duration of very long pulses, such as those used for LEx. Indeed,
this is one of the primary applications originally envisaged for
PTx (17,18) because of the direct analogy with parallel imaging.
LEx pulses are inherently lengthy, as their k-space trajectories
must visit high spatial frequencies in order to restrict the excited
magnetisation to a small area. PTx allows the excitation k-space
to be undersampled, with multiple transmit channels used to
avoid aliasing, as is the case for image encoding with parallel im-
aging. Acceleration of such pulses is important, not only in order
to make them usable within rapid sequences, but also in order to
reduce relaxation and off-resonance effects.
PTx–LEx pulses have been an active area of development

since the first demonstrations of the technique in post-mortem
animal models at 4.7 T (110) and in humans at 3 T (111). PTx–
LEx used for the purpose of reduced FOV imaging has so far
found limited applications, perhaps as reducing the number of
measurements results in a loss of signal-to-noise ratio (SNR),
and this approach directly competes with standard receive side
parallel imaging. However, as with parallel imaging, performance
could be expected to be improved with the increased SNR avail-
able with UHF MRI. PTx–LEx may prove to be particularly useful

Figure 3. (A) L-curve showing the trade-off between power and homogeneity for a five-spoke flip angle shimming pulse solved using linear least
squares (LLS) and magnitude least squares (MLS). The best MLS B1

+ shimming result is also shown. (B) Excitation magnitudes (top), excitation phases
(centre) and the magnitude error (bottom) with respect to the target excitation of 0.5. The displayed spokes solutions were chosen to have the same
power as the best MLS B1

+ shimming solution. (Data courtesy of Dr Alessandro Sbrizzi and Dr Hans Hoogduin, UMC Utrecht, the Netherlands.)

Figure 4. Liver imaging at 7 T with increasing numbers of spokes. Gradient echo images were each obtained within a single breath hold. In each case,
homogeneity was optimised over the liver only and the images were processed to remove the receive field profiles. Homogeneity in the liver improves
with an increasing number of spokes. (Images courtesy of Dr Xiaoping Wu, University of Minnesota, MN, USA, originally from Quant. Imaging Med. Surg.
2014; 4: 4–10, with permission.)

F. PADORMO ET AL.

wileyonlinelibrary.com/journal/nbm © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. NMR Biomed. 2016; 29: 1145–1161

1150



in situations in which avoidance of artefacts is key, for example
by not exciting moving structures, as demonstrated in rodents
(112) and humans at 7 T (113,114). Another issue is that pulse du-
rations, even after PTx acceleration, are typically still too long for
use with rapid gradient echo or steady state free precession
imaging sequences, but LEx may find a more natural use in other
sequences, such as pulse-acquire spectroscopy, where TR is
sufficiently long to tolerate a long RF pulse, or 3D fast spin echo
(FSE) imaging, where only the excitation pulse needs to achieve
spatial selectivity alongside subsequent non-selective refocusing
pulses (115,116), as demonstrated in Fig. 6. Clinical
implementations of PTX–LEx have also been demonstrated at
3 T, focusing on abdominal diffusion-weighted imaging applica-
tions where smaller FOVs can be used, reducing the length of
the utilised echo planar imaging (EPI) readouts (117–119).
All RF pulses are spectrally selective to some degree, with

bandwidth inversely related to duration; hence, typically, long
LEx pulses tend to have narrow bandwidths. It is straightforward
to add spectral selectivity to the Fourier STA approximation for-
malism as just another dimension whose associated ‘k-space’
variable is time (120). This property has long been exploited to
produce spectral–spatial-selective pulses, such as binomial
pulses often used for water or fat excitation. In fact, spokes
pulses are identical in form to slice-selective spectral–spatial
pulses with the addition of in-plane gradients. It has also been
demonstrated that PTx can be used to achieve different excita-
tion properties in water and fat, and to compensate for B0 effects
(121,122), within the same STA approximation design frame-
work. With these methods, the additional degrees of freedom of-
fered by PTx are being used to affect the spatial variation of the
spectral response of the pulse by producing fields that are mod-
ulated in both space and time. If pulses are designed without
accounting for frequency, they are in fact only controlling the
on-resonance response. The inclusion of B0 information in the

design process is successful for single chemical species materials;
however, materials with different chemical shifts, such as fat, will
have uncontrolled excitation properties. This can be remedied by
solving over a range of frequencies (123) in order to extend the
bandwidth, or indeed by solving only for particular frequencies
of interest, such as water and fat (124).

There are many possible additional extensions to the spatial
domain view of pulse design. For example, PTx has been
employed to overcome EPI signal drop out present as a result
of through-slice dephasing (125–127) by producing excitations
that have the opposite phase variation through the slice and
hence give refocused images at the echo time. Recent interest
in the use of simultaneous multi-slice (SMS) excitations (128)
with UHF MRI for ultra-high resolution diffusion and functional
imaging (129) has also led to challenging pulse design problems
as a result of the inherent high RF power and low bandwidth, in
addition to B1

+ inhomogeneity. Many methods incorporating SMS
with PTx have been proposed and demonstrated at UHF
(130–134), taking advantage of the distributed nature of PTx ar-
rays to reduce peak RF power (a particular issue for SMS pulses),
SAR and improve homogeneity. A recent study also proposed
extending the spatial domain to include different ‘virtual slices’
that can be used to account for B1

+ variation over the breathing
cycle (135) – this approach extends the spatial domain to also in-
clude different respiratory phases, and improved robustness
against respiration-induced errors was demonstrated.

k-space trajectory optimisation

The design methods outlined so far give an optimal RF wave-
form for a given trajectory, but, as only the resulting effect on
the magnetisation is of any real importance, it would make more
sense to consider the trajectory itself as also subject to optimisa-
tion. Unfortunately, although the RF design problem can be cast

Figure 5. Matched coronal slices from T1-weighted magnetisation-prepared rapid gradient echo (MP-RAGE) images acquired at 7 T using standard
non-selective and spiral non-selective (SPINS) radiofrequency (RF) pulses with a two-channel head transmit coil. Both were acquired at an isotropic res-
olution of 0.8mm with a flip angle of 8°, shot interval of 3.5 s, inversion delay of 1.2 s, TR = 9ms, TE = 2.9ms, parallel imaging reduction factors of 1.3x2
(anterior-posterior x right-left) with a total imaging time of approximately 10minutes in both cases. Image uniformity was seen to have improved
throughout the head, particularly in the cerebellum, as shown here. (Images courtesy of Dr Hans Hoogduin, UMC Utrecht, the Netherlands.)
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straightforwardly as the inversion of a matrix problem, the trajec-
tory enters into the design matrix itself, and therefore alternative
methods are required to find both the optimal RF pulse and tra-
jectory together.

A common approach is to create trajectories for classes of de-
sired excitation pattern or for different RF coils that are manually
or semi-automatically optimised. For example, SPINS pulses (106)
were designed initially for inhomogeneity correction at 3 T,
where the desired response is typically a dome shape in 3D; a
low-frequency 3D spiral k-space trajectory is therefore a natural
choice. The k-space locations for the rather simpler spokes
(136) and kT-points (105) trajectories are also often decided on
the basis of similar arguments, for example using a ‘Fourier’
method that selects k-space locations which correspond to the
highest energies in the Fourier transform of the target pattern.

A more rigorous strategy is to parameterise the trajectory and
to formulate the pulse design problem as an optimisation over
both the RF samples and trajectory parameters iteratively. This
approach has been explored for 2D (137,138) and 3D (139) tra-
jectories. Yip et al. (139) showed that this type of optimisation
leads to intuitively reasonable results – for example, altering an

EPI trajectory to increase the sampling density in regions in
which the Fourier transform of the target excitation has higher
energy. A drawback is that the additional level of optimisation
results in increased computation times, particularly as the trajec-
tory optimisation is a non-linear problem. This issue is likely to be
more significant for 3D problems, or when there are a large
number of trajectory parameters, but simplifies when applied
to spokes/kT-points pulses. Zelinski et al. (140) showed that
optimising by enforcing ‘sparsity’ of k-space locations helps to
reduce the number of required spokes and performs better than
the simple Fourier approach. The choice of multiple locations si-
multaneously is a computationally complex problem; Ma et al.
(141) proposed a fast greedy algorithm which chooses locations
one at a time, which reduces these requirements considerably.
The frequency selectivity of the pulse is also determined by the
time ordering of the locations chosen, and so an updated greedy
algorithm was proposed to also take this into account (142).
As well as excitation fidelity, trajectories can also be optimised

to minimise the required RF power. For example, spiral trajecto-
ries designed for 2D excitation have employed lower slew rates
towards the centre of k-space (98,143) in order to reduce

Figure 6. Three-dimensional eight-channel parallel transmission-local excitation (PTx-LEx) pulse design for three-dimensional (3D) fast spin echo imaging
at 3 T (116). The gradient waveforms (top left) result in a 3D shells excitation k-space trajectory [top right, ref. (221)] consisting of multiple nested shells that
are coloured separately here for clarity. The overall pulse duration is 12.3ms. The pulses (middle left, different colours indicate different channels) are de-
signed to produce a 90° excitation in the target volume placed over the cerebellum (middle right). Full field of view (FOV) image using non-selective hard
pulse excitation (bottom left; isotropic resolution of 1mm with parallel imaging reduction factors of 1.7x1.7 (anterior-posterior x right-left), full FOV image
using designed LEx (bottom middle) and reduced FOV image using LEx (bottom right, isotropic resolution of 0.8mm without parallel imaging).
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instantaneous RF power, similar to applying variable rate selec-
tive excitation (VERSE) (144). An alternative solution is to numer-
ically optimise a trajectory based on properties of the target
(145,146). A more comprehensive approach for constraining
peak instantaneous power was proposed by Lee et al. (147)
who modified a time-optimal implementation of the VERSE algo-
rithm (148) by transforming the constraint on peak RF power, so
that it could be included as a gradient constraint. An issue with
VERSE is that time dilating RF pulses changes their off-resonance
properties. Lee et al. (149) proposed an updated version of their
method which iteratively alters the RF design after time dilation
to counter this issue.
Of the methods discussed so far, some update k-space on a

per-subject basis (137,139,147,149), whereas others have a fixed
trajectory (and hence gradient waveform) for all subjects
(106,143,145,146). Although the latter group is less flexible, these
methods do avoid the performance of additional calculations
whilst the subject is in situ. Another advantage of this latter ap-
proach is that gradient system imperfections can be calibrated
in advance. PTx pulses with complex gradient waveforms are of-
ten more sensitive than standard pulses to gradient system er-
rors (150,151). In cases in which the waveforms do not change
from subject to subject, these can be measured in advance with
the true trajectory used for pulse design (106,152); this is feasible
because the required corrections have been reported to remain
stable over long periods of time (106). Methods that adapt trajec-
tories for each subject may need to incorporate gradient imper-
fections using models, for example by treating them as a linear
time-invariant system and employing an impulse response
function (116,153,154). Waveform measurement using MRI and
iterative predistortion (155) of waveforms require gradient
measurements that can be performed quickly with the subject
in situ; although image-based methods are available (for exam-
ple, ref. (156)), this general approach is much more feasible if
gradient probe measurements are available (157).

Beyond the STA approximation

The STA approximation provides an elegant Fourier picture
which is useful for discussion as well as for simplifying the design
problem. However, the linear k-space picture breaks down for
large tip angles (LTAs) and, although some classes of k-space tra-
jectory can produce satisfactory results (158), more sophisticated
design methods are required. Non-PTx LTA pulse design can be
performed using the Shinnar Le-Roux (SLR) algorithm (159,160),
which was recently extended to multidimensional k-space trajec-
tories (161). However, other methods are required for LTA PTx
design; many approaches have been proposed, and these typi-
cally incorporate B1

+
field information. A simple extension to

STA approximation pulse design is the ‘additive angle’ method
(162), which uses STA approximation designed iteratively with
a Bloch simulation, designing a new pulse at each stage to com-
pensate for the errors of the previous one, and then summing all
of these contributions at the end. This method can be improved
upon by performing a perturbation analysis of the Bloch equa-
tions; the STA approximation is the first-order term, but higher
orders can be addressed iteratively to improve the design
(163). These methods usually require multiple Bloch equation
simulations to accurately model the magnetisation behaviour.
The simplest case is that of ‘composite’ pulses, consisting of
trains of a few non-selective pulses; the solution to the Bloch
equations here can be boiled down to a set of simple rotations,

and these can be optimised numerically (164). More sophisti-
cated pulses can be designed using optimal control methods,
which solve dynamic optimisation problems with differential
equations as constraints. These have a long history of use within
MRI (for example, ref. (165)), and have been used recently for PTx
RF pulse design (108,166–168), with much work carried out to re-
duce computation times and to find globally rather than locally
optimal solutions.

Finally, the trend of parallelising the subsystems of MRI scan-
ners has recently been extended to gradients. The parallel imag-
ing technique using local gradients (PatLoc) (169) and O-space
(170) imaging offer the ability to image higher resolutions with
lower peripheral nerve stimulation (PNS) by using non-bijective
gradients. PTx has been unified with these methods, but the
Fourier domain picture does not apply because of the non-
linearity of the spatial gradients (171).

MULTI-PULSE PTX

So far, the methods discussed have either fixed the B1
+
field pat-

tern throughout an RF pulse or modulated it over very short
timescales, during a single RF pulse. An intermediate timescale
also exists: modulation between pulses in one single sequence,
referred to here as multi-pulse PTx. As discussed earlier, there
is typically a trade-off between achievable B1

+ homogeneity and
RF power/SAR. One use for multi-pulse PTx is to apply this
trade-off flexibly within a sequence. Homann et al. (172) pro-
posed switching static PTx weights mid-scan between high
SAR, good B1

+ homogeneity settings when low-frequency k-space
data are being acquired and low SAR, poor homogeneity set-
tings when outer k-space data are being obtained. This mini-
mises the impact of poor B1

+ homogeneity on image contrast
which is dominated by the RF conditions when acquiring the
centre of k-space, whilst reducing the average SAR. Metzger
et al. (90) used a similar principle for inversion-prepared renal an-
giography at 7 T; low SAR weights are used for adiabatic inver-
sion pulses as these can tolerate some B1

+ inhomogeneity, but
typically have high associated SAR, whereas high B1

+ homogene-
ity weights are used for excitation pulses whose homogeneity
directly affects image quality, but which have a lower overall im-
pact on the sequence SAR. A related method is time-interleaved
acquisition of modes (TIAMO) (173,174), which can be used to re-
move signal voids caused by regions of low or even zero B1

+

employing a parallel imaging reconstruction to create a compos-
ite image of data acquired using interleaved static PTx drives
with different spatial sensitivity patterns that shift low B1

+ areas
to different locations.

By their nature, MRI pulse sequences consist of many RF
pulses, and the overall effect on the received signal depends
on the interactions between these pulses and the spin system.
All of the RF pulse design and shimming strategies discussed
so far have treated each pulse in isolation; however, an alterna-
tive is to take a more integrated approach. One example is to
design pairs of pulses together, which can be beneficial in situa-
tions in which pulse properties need to be ‘matched’, as demon-
strated for spin echo excitation and refocusing pulse pairs (175)
and for flip-down/flip-up pairs (176).

In rapid imaging sequences, the magnetisation will reach a
steady or pseudo-steady state (PSS) after many RF pulses; it has
been shown that dynamic modulation of the static PTx weights
during FSE sequences (177) can lead to better image quality than
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static B1
+ shimming alone. This approach, referred to here as di-

rect signal control (DSC), is fundamentally different from those
discussed so far. Although B1

+ shimming typically seeks to control
the B1

+
field pattern, and flip angle shimming controls the trans-

verse magnetisation at the end of an RF pulse, DSC may be
thought of as ‘signal shimming’, where we seek to directly influ-
ence the signals that will be received during an imaging se-
quence consisting of multiple interacting RF pulses. One way of
achieving this is by performing a non-linear optimisation with re-
spect to a signal model; for FSE sequences, this can be efficiently
constructed from a spatially resolved extension to the well-
known extended phase graph (EPG) formalism (178). The
method has been applied to 3D FSE imaging at 3 T (179), and re-
lated approaches which employ full PTx refocusing pulses have
been demonstrated at 7 T (180–182), an example of which is
illustrated in Fig. 7.

SAR

Increased SAR is intrinsically a problem for UHF MRI and is an
area in which PTx can have both positive and negative effects.
As PTx results in spatiotemporal variations in electric (as well as
magnetic) RF fields, it can change the expected locations of
hot spots. If local SAR is not considered when performing PTx
calculations, a significant risk of heating can result. Global (i.e.
whole body averaged) SAR can be estimated using measure-
ments of forward and reflected power (183), but the estimation
of local SAR typically requires a knowledge of electric fields.
These cannot currently be measured reliably by MRI (although

it is an active research field (184–187)), and so this information
is typically provided by numerically solving Maxwell’s equations
on a high-resolution grid (typically 1–5mm3) for digital body
models. Once obtained, the E-field data can be related to SAR
using the Q-matrix framework (188), which represents, in a ma-
trix, the contribution to SAR from each possible combination of
channels. For example, the instantaneous local SAR is given by
Equation [5], where σ(r) is the tissue conductivity, ρ(r) is the tis-
sue density and Q(r) is the Q-matrix at location r. The global
SAR matrix Qglobal can be inferred by taking a weighted average
of the local Q matrices (189).

SARlocal rð Þ ¼ σ rð Þ
2ρ rð Þw

HQ rð Þw [5]

All parts of the body exposed to the RF fields must be consid-
ered when evaluating SAR, not just those in the imaging region.
As the location of maximum local SAR can occur anywhere and is
not known a priori, Equation [5] must be evaluated for every lo-
cation in space to ensure that regulatory limits are met. This is
time consuming because of the sheer number of matrices, often
in the range of 106–108. This process can be significantly acceler-
ated by taking advantage of the positive semi-definite nature of
the Q-matrices to form a smaller subset (known as ‘virtual obser-
vation points’) of Q-matrices, QVOP, whose local SAR values
dominate the calculation (190,191). Compression factors of
the order of 5000 have been demonstrated for human models
with eight transmit channels (190) with the guarantee of no

Figure 7. T2-weighted three-dimensional fast spin echo (FSE) imaging at 7 T using dynamically modulated kT-points radiofrequency (RF) pulses for ex-
citation and refocusing. The diagram (bottom) depicts the kT-points RF pulses used, consisting of multiple hard pulses. The amplitudes and phases of
these hard pulses are optimised so that, during each shot of the FSE sequence, the magnetization is brought to a pseudo-steady state (PSS) with de-
sired echo amplitude by the first P1 pulse (here P1 = 10), and then subsequently maintained in this state, despite the presence of strong B1

+ non-uni-
formity. The spatially resolved extended phase graph (SR-EPG) framework is used to predict the echo amplitudes for all locations in space and at each
TE, and these are optimized to be uniform (182). Dynamic modulation allows more uniform signals to be obtained, recovering reduced signals that are
apparent in the temporal lobes (see increased signal apparent on the ratio image). (Images courtesy of Dr Florent Eggenschwiler, CIBM, Lausanne,
Switzerland.)
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underestimation of max{SARlocal} and a prescribed limit for over-
estimation, in this case 5%.
Much work has gone into understanding the exact properties

of the required digital body models (for example, ref. (192)).
Many strategies have been proposed, including the production
of patient-specific whole-body models based on in situ scans of
a given subject (193), the creation of patient-specific models by
image registration (194) or the use of generic models with a suit-
ably chosen conservative safety factor (195). Although the major-
ity of proposed methods rely on some form of SAR model, others
are also exploring the possibility of direct in vivo measurement
by post-processing B1

+ maps, with results demonstrated at 3 T
(196) and 7 T (185). Clearly, direct measurement of SAR would
be ideal; however, these methods could only be practically used
if the necessary data could be acquired quickly so as not to com-
promise the examination itself – this is made more challenging
by the fact that areas of elevated SAR can occur far from the slice
or volume that is being considered for imaging, and so SAR mea-
surements will necessarily require large fields of view for many
coil designs. Direct measurements of temperature increases are
also being explored as a way of determining safe scanning using
MR thermometry (187,197).
Once SAR information has been obtained, it can be used to

limit SAR within pulse sequences (90,172,173). For PTx pulse de-
signs, this is achieved by incorporating SAR penalisation terms
into the cost functions minimised to calculate the pulse wave-
forms (e.g. Equations [2] and [4]). Table 2 describes the SAR
terms commonly used in static PTx optimisation problems. All in-
volve a quadratic form of the weights and Q-matrices. These
terms can be easily generalised for dynamic PTx pulse calcula-
tions to limit local SAR (46,47). This type of constraint is useful,
given that it has been shown that maximum local SAR, in partic-
ular, can vary strongly when pulse design parameters are
changed (198). It has also been proposed that pulse design can
be used to directly constrain temperature rather than SAR, by
combining SAR models with biophysical thermal models utilising
the Pennes bioheat equation (99).
Rather than viewing SAR as a constraint, the reduction of SAR

can be seen as the major target of any optimisation – Zhu (18)
discussed this possibility in his early paper on PTx, and it has
been shown that simultaneous reductions in local SAR and B1

+

inhomogeneity can be achieved by performing B1
+ shimming

within localised ROIs for prostate imaging at 7 T (34) and for car-
diac imaging at 3 T (199). A further application of PTx has been
the control and reduction of SAR in the presence of implanted

or interventional devices (200–203). These methods use spatial
control of RF electric fields, made possible by PTx, in order to
minimise heating effects using simulated electric fields or in situ
measurements of electrical coupling for optimisation. This is a
promising application for PTx that has so far been of particular
interest at lower field strengths.

Finally, it should also be noted that electric fields and SAR de-
pend on the utilised RF coil. It has been shown that certain trans-
mit arrays can be driven using a basis of circularly polarised
modes (204), some of which produce very little B1

+ yet significant
electric fields. Although they produce very little B1

+, these ‘dark
modes’ can be used to cancel electric fields produced by the
more B1

+ efficient modes to reduce SAR hotspots (205). Taking
this concept further, it is possible to design coil arrays with some
dedicated ‘dark’ elements that primarily produce electric fields.
An example of such a system is illustrated in Fig. 8 from ref.
(206), where dipole antennas are employed in conjunction with
loops. Although this design is unconventional, each element in
this array is driven independently, and it may be used in exactly
the same way as any other PTx array using any of the optimiza-
tion methods outlined previously. It has been demonstrated that
potentially large reductions in local SAR (206) can be achieved.
Although these approaches are still in their infancy, previous the-
oretical studies into optimal current distributions suggest that
there are significant benefits yet to be obtained (61,207).

B1+ MAPPING

PTx methods inherently require some knowledge of the transmit
field produced by each element of the transmit array. This informa-
tion is typically acquired in situ, and many different strategies have
been proposed. Themost basic approach involves the utilisation of
a sequence which measures the magnitude of the transmit field
(for example, see refs. (208–211)), and repeating this for each trans-
mitter. The relative phase of each transmitter is either obtained
from the phase of the images acquired or, in some cases, from a
dedicated acquisition (212). This approach is typically lengthy, as
the majority of B1

+ mapping methods (apart from recently pro-
posed exceptions (211–213)) are slow and, unlike receive field
mapping, transmit channels must be mapped sequentially. An-
other approach is to acquire only a single magnitude transmit field
map of all coils transmitting in a default configuration, supple-
mented by a series of low-flip-angle spoiled gradient echo im-
ages (214,215) (whose signal is proportional to the B1

+
field) from

which relative transmitter information can be obtained. This tech-
nique is fast, as the data acquisition is very efficient with low SAR.

UHF B1
+ mapping is more challenging than at lower field

strengths, primarily because of the increased dynamic range of
the transmit field; typically very large B1

+ is produced adjacent
to coil elements, with very low and often zero amplitudes pro-
duced further away within the FOV. All B1

+ mapping methods
have a limited range of flip angles over which they can acquire
accurate measurements (216). In order to combat this, the use
of linear combinations (LCs), constructed so as to reduce the dy-
namic range, has been proposed (217,218). The choice of LC usu-
ally requires a trade-off between reducing the dynamic range
and the ability to invert the measurements (219). Recent work
at 9.4 T has suggested that Fourier encoding is a good choice
using an eight-channel head coil (220), but work at 3 T has
shown that the best choice of LC is coil array and load specific
(219), and a suitable LC cannot always be found.

Table 2. Example cost function terms ΦSAR used to con-
strain the specific absorption rate (SAR) in static parallel
transmission (PTx) optimisation problems

Energy constraints Cost function term References

Total RF power
(I, identity matrix)

wHIw (92)

Global SAR wHQglobalw (18)

Local SAR (index i
runs over all spatial
locations)

wHQ(ri)w ∀ i (46)

VOP SAR (index i
runs over all VOPs)

wHQVOP
i w ∀ i (191,192)
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CONCLUDING REMARKS

UHF MRI provides a powerful tool for investigation of the human
body, for both clinical diagnosis and fundamental research. How-
ever, it brings a new set of challenges which need to be over-
come. This review has focused on how the new degrees of
freedom made possible by PTx can be used, focusing on differ-
ent temporal scales over which RF fields can be modulated and
different ways in which this interacts with MR image formation.
We have touched upon some of the remaining technical chal-
lenges, such as accurate estimation of SAR and rapid B1

+ map-
ping, but there are also additional RF engineering issues, such
as optimal design of RF coils and amplifiers, that are beyond
the scope of this review. Many of the methods discussed here
have been proposed in methodological studies, but as PTx tech-
nology matures and becomes more widespread for UHF MRI, it is
hoped that some will now prove their efficacy for routine in vivo
research and clinical use.
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